新建筑
  考察与研究 本期目录 | 过刊浏览 | 高级检索 |
基于随机森林模型算法的城市创新空间演变影响要素研究 ——以武汉市主城区为例
陈从心 张萍 韩叙
陈从心:中国地质大学数学与物理学院(武汉,430074) 张萍:华中科技大学建筑与城市规划学院(武汉,430074) 韩叙:广州市城市规划勘测设计研究院有限公司(广州,510000)
Research on the Influential Elements of Urban Innovation Space Evolution Based on Random Forest Model Algorithm: Taking Wuhan Main City as an Example
CHEN Congxin ZHANG Ping HAN Xu
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 城市创新空间的发展演变存在显著差异,关注其成因及关键影响要素具有重要现实意义。文章以武汉市主城区为研究对象,运用随机森林模型这一机器学习方法,对影响研究区域内创新空间演变的因素进行分析。结果表明,随机森林模型在处理该数据集方面表现出较好的拟合效果,能够有效捕捉影响因素与创新空间演变的复杂非线性特征。同时,该模型还揭示了影响创新空间演变的重要因素为人口密度、距商业中心距离、地铁站密度和路网密度。基于以上分析,为城市创新空间未来的发展提出建议。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈从心 张萍 韩叙
关键词 创新空间演变机器学习数学模型随机森林武汉市    
Abstract:The evolution of urban innovation space development varies greatly, and it is of great practical significance to pay attention to its causes and the key influencing factors of its evolution. Taking Wuhan main city as an example, the machine learning algorithm, and Random Forest Modeling Algorithm is used to analyze the influencing factors on the evolution of Wuhan’s innovation space. The results show that the Random Forest Modeling algorithm fits the dataset well, can effectively capture the complex nonlinear characteristics of the influencing factors and the evolution of innovation space, and reveals that the important factors affecting the evolution of the innovation space are population density, distance from commercial centers, subway station density and road network density. Finally, we make suggestions for the future development of urban innovation space based on this evidence.
Key wordsinnovation space evolution    machine learning    mathematical model    random forest    Wuhan
    
引用本文:   
陈从心 张萍 韩叙. 基于随机森林模型算法的城市创新空间演变影响要素研究 ——以武汉市主城区为例[J]. 新建筑, 2024, 42(1): 114-117.
CHEN Congxin ZHANG Ping HAN Xu. Research on the Influential Elements of Urban Innovation Space Evolution Based on Random Forest Model Algorithm: Taking Wuhan Main City as an Example. New Architecture, 2024, 42(1): 114-117.
链接本文:  
https://116.62.217.67/XJZ/CN/10.12069/j.na.202401114     或     https://116.62.217.67/XJZ/CN/Y2024/V42/I1/114